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The calculation of matrix elements of the NMR spin Hamiltonian 

2 = (27r-’ 1 yJ-z~z,(i) + 1 .zijI(i) * I(j) 
z iii 

(1) 

between basic state wavefunctions is one of the preliminary steps for the detailed 
analysis of high-resolution NMR spectra [l]. Since each basic product function 
is itself an eigenfunction of each term in the first part of Eq. (l), the external-field 
Hamiltonian, the diagonal matrix elements of this part are simply obtained by 
replacing I&) in this part by f 4 according as the corresponding spin function 
is CL or /3; and there are no off-diagonal matrix elements of external-field 
Hamiltonian between the basic product functions. There will however, be both 
diagonal and off-diagonal matrix elements of second part of equation (l), the 
spin-coupling Hamiltonian, between the basic product functions. Moreover, 
in the evaluation of the matrix elements of the spin coupling Hamiltonian with 
five or more spin, there is considerable labor and tedious work involved. Corio [2] 
has proposed a method to simplify the calculations, but the calculations still must 
be done manually. Swalen and Reilly [8] have developed a computer subroutine 
for calculating these matrix elements in their iterative scheme for analysis of NMR 
spectra, however their program does not give these matrix elements explicitly 
and it cannot be used in other schemes for analysis of NMR spectra. A new method 
which employs a digital computer to evalute the matrix elements of the spin 
coupling Hamiltonian is proposed. 

If the nuclei were actually independent, the basic product function would 
[aside from degeneracy, which in the case of two identical nuclei, yields $(a/3 Ij, /Ia)] 
themselves be stationary-state wavefunctions (or basic state wavefunctions) in 

1 This work was supported through a contract with the Atomic Energy Commission. 
2 Present address: Department of Chemistry, Harvard University, Cambridge, Mass. 02138. 
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the presence of the external magnetic field. However, the spin-coupling Hamiltonian 

a?(l) = c &I(i) * I(j) 
i-d 

may cause mixing between different product functions. Since the basic product 
functions tjO are all orthogonal to one another, the correct stationary-state wave- 
functions (or basic state wavefunctions) are the linear combinations of the basic 
product functions which diagonalize the matrix of the complete Hamiltonian 
[see Eq. (l)]. We define J as the number of basic state wavefunctions, K as the 
number of basic product functions in a basic state wavefunction due to degeneracy, 
L as the number of spin functions and N as the total number of spins. Then, spin 
functions, basic product functions, and basic state wavefunctions can be denoted 
by a three-dimension array ZD(J, K, L), e.g. in a two spin system, ZD(1, 1, 1) 
means the first spin function in the first product function of the first-state wave- 
function, that is cy. ZD(2,2, 1) means the first spin function in the second product 
function of the second-state wavefunction, i.e., /3. So, in the two spin system, 
tJl = 0101 can be represented by 

$1 = ZDO, 1, 1) ZDU, 192); $2 = W%$ + @I by 
qi2 = l/2/2(10(2, 1, 1) ZD(2, 1,2) + ZD(2,2, 1) ZD(2,2,2)),... etc.. 

The coefficients are introduced as CD(J, K). 
From the simple rules for evaluating the matrix elements [l], [3], we know 

that matrix elements of 

I ,  l I t  = ZJ,, + ZJt, + Z& 

exist only when the two basic product functions ZD(.Z, K, L), L = l,..., N i.e. 
(ZDJKJDJK~ . -. ZDJKN) and ZD(J',K',L'), L' = l,..., N, 

[t.e., (ZDJ~K*IZDJ*pP . . . ZDJ*pN)] 

differ by no more than two of the ZD's. For computer calculation, we let these ID's 
have numerical values 1 or 2 according as ID's are 01 or /3 spins. For example, if a 
basic product function is (ZD~K~ZDJK~ZD~K~ZD& = $3& then it has the numerical 
value 1212. If another basic product function is 

then it has the numerical value 1121. These two wavefunctions ditfer by three of 
the ID’s (ZDJK2 # ZD,‘ps , ZDJK~ f ZDJ~p3 , Zo,K, f ZDJ,K,4) SO there are no 
matrix elements between these two product functions. Also if the two product 
functions differ by one of the ID’s only, there are still no matrix elements between 
them. For example, (ZD~=~ZDJK~ZD~~~ = @?c& = 1212, and 
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differ by one ID only (ZDJK., f  IDJlrd , the other ID’s in these two product 
functions are the same), so there are no matrix elements between them. Matrix 
elements exist between two wavefunctions for even differences up to two (namely, 
zero and two) of the spin functions; e.g., (ZO,,,ZD,~,ZD,~~IO,,$ = ~$a/3 = 1212 
and (ID~,K,lZD,,KzZD~,K,alDJ’K’4 ) = @$I = 1212 have zero difference, so matrix 
elements exist between them. (ID~~~ZO,,,ZD,~~ID~~~o,,,lo,,,) = &$ = 1212 and 
(ID,,lr,lZD,,K,,ZDJ,~,~ ZD,,p4) = ~$$?a = 1221 differ by two ID’s (ZO,,, # IDJrrp3 
and IDJKa # ID,,,,,), so matrix elements also exist between these two basic 
product functions. 

From the above, we know that the typical term of the matrix elements of the 
spin coupling Hamiltonian is JJ(I(I’) l I(j), in which only two nuclei are involved. 
So when we calculate the matrix elements, we need only consider two nuclei each 
time and Table I can be easily obtained. Using the numerical characteristics of 
each two pairs of spin functions, Table 11 can be constructed. Based on Table II, 
the Fortran computer program1 Matrel have been written for the Control Data 
3600 computer. 

The program used for calculation of spin-coupling-Hamiltonian matrix elements 
is quite straightforward. The basic state wavefunctions, the basic product functions 
and spin functions are numbered by J’s, K’s, and L’s, respectively. The program 
steps systematically through all of the basic wavefunctions, attempting to calculate 
the matrix element between each different pair of basic state wavefunctions. First 
it calculates the matrix element between & and #1 , then & and #Z , then +I and 
* 3 ,*** to #,,L, which is the last of the basic state wavefunctions; then it comes 
back to calculate & and & , & , and #Z, and so forth. The computer picks up two 
basic state wavefunctions #1 and & , then compares the basic product functions 
in the basic state wavefunctions (e.g., it compares the basic product function 
of J = 1, K = 1 with that of J = 1, K = 1; then J = 1, K = 1 with J = 1, 
K = 2; then J = 1, K = 2 with J = 1, K = 1; then J = 1, K = 2 with J = 1, 
K = 2). If these two basic product wavefunctions have matrix elements between 
them, then the computer goes further to pick up each different pair of spin 
functions and performs various tests as listed in the Table II, classifies it into one 
of the eight cases in Table II, and gives a value for the coefficient of the spin 
coupling constant of these two nuclei. If these two basic product wavefunctions 
do not differ (i.e., have the same spin wavefunction) the computer also assigns 
a value according to Table II for the coefficients of the spin-coupling constant of 
any two nuclei. If these two basic products do not have matrix elements, then the 
computer picks up another basic product function for comparison. These proce- 
dures go on and on until it has calculated all the possible matrix elements. The 
output will be all the coefficients of all the spin-coupling constants; e.g., in five-spin 

1 Fortran Listings for the computer programs can be obtained from the authors. 
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system, the matrix element between & and $r will be represented by coefficients of 
Jij in J J J J J J 11 12 13 14 15 9 21 *.. Jz5 , J,, . . . J,, , Jai ,... Jd5, Jsl . . . Jb5, and here obviously, 
we know that Jll , Jz2 , J,, ,... etc. are zero and that J13 = J31 , J12 = Jzl ,..., etc. 
So from the output we can easily obtain the matrix element between any two 
basic state wavefunctions. 

In order to handle larger spin systems, the input basic state wavefunctions 
of a system can be broken down into many subgroups, and each time we may take 
one subgroup as the input basic state wavefunctions. For example, in a five-spin 
system, there are a total of thirty-two basic state wavefunctions; each time we can 
take eight or sixteen basic state wavefunctions, as input. The size of the subgroup 
(the total number of basic state wavefunction of the subgroup) depends entirely 
on the size of the system (total number of nuclei) and the capacity of the computer. 
One can also use the basic state functions with the same projection of spin angular 
momentum M, whichever is more convenient for the computer. 

This program has proved to be very useful for the detailed analysis of high- 
resolution NMR spectra of larger spin systems [4] especially in using Whitman’s 
[5], [6] direct-analysis NMR-spectra method or many other methods [7]. 
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